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Abstract

A commonly encountered integer linear program, basic

to cyclic staffing and scheduling, has a constraint matrix

possessing the property of “circular l’s in columns.” In

general , such a matrix is not unimodular, balanced, or per—

fect. Nevertheless, many such problems may be efficiently

solved for integer answers. A change of variable transforms

them to comfortably finite and reassuringly predictable

series of minimum cost network flow problems.
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CIRC ULAR l’ s AND CYCLIC STAFFING

1. Two Fundamental Staffing Models

Consider the integer linear program

mm cx

s.t. Ax > b (1.1)

x ~ 0, integer

where , throughout the paper, E and ~ are vectors with all

entries integer and A is an m x n matrix with all entries

0 or 1. Without loss of generality , we may assume b, C ~ 0.

To represent continuous workshifts in linear time, a

common staffing model has A possess the property of conse-

cutive l’s in columns (e.g., Veinott and Wagner (19fl.

Such matrices are happily met since they are known to be

totally unimodular ; moreover, for such matrices, problem

(1.1) is equivalent under linear transformation to the

minimum-cost network flow problem

mm cx

s.t. [TA, —T]~ = TE (1.2)

x > 0, integer

where T is the m x m matrix

1
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1

and where “equivalence” means here that ~ solves (1.1) if

and only if i~ solves (1- 2 )  [11,121. Transforming (i.i) by 
J

T to reveal its network structure corresponds to succes-

sively row—reducing the constraints of (1.1) [191.

Since the minimum cost network flow algorithm is formally

efficient (8 1, we may consider (1.1) to be efficiently

solvable in its guise (1.2). V

The second basic s taff ing model represents continuous

workshifts in cyclical time (3]. For this model the matrix

A possesses the property of circular l’s in columns (181,

as for instance in Example 1.1, where the strings of l’s

may be imagined to wrap around the matrix. Such matrices
I

are in general neither unimodular, balanced, nor perfect [16].

Indeed they are notorious for the fractional extreme points

which they induce in (1.1) [131.

A special n x n circular l’s matrix has in each column

a band of k l’s permuted cyclically (see Examples 1.2 and

1.3). We will call these (k, n) matrices.

The most fundamental of the cyclic staf f ing models is

given by -

mm lx 
.

s.t. Ax > b (1.4)

> ~ , integer

V 2
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1 0 1 1 1 1

1 1 0 1 1 1

1 1 0 0 0 1

0 1 0 0 0 1

0 1 1 1 0 0

o 0 1 1 1 1

Example 1.1: A matrix with “circular l’s in columns.”

1 0 0 1 1

1 1 0 1 1 0 0 1

1 0 1 1 1 1 0 0

0 1 1 0 1 1 1 0

0 0 1 1 1

Example 1.2: A (2, 3) matrix. Example 1.3: A (3, 5) matrix.

3
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V 
whe re A is a (k, n) matrix. The objective corresponds to

minimizing the total workforce size necessary to meet

period manpower requirements b. For A a (5, 7) matrix,

thi s problem was studied by Tibrewala , Philippe, and Browne

[171 (also by ~,arious others [2,4, 6,151), where the (5, 7)

matrix represents workshifts with two consecutive days off

each week. They observe that their solution generalizes 
V

to A a (k, k + 2) constraint matrix. A rather more complex

solution technique is proposed by Guha [10 ] for general (k, n)

matrices. In this study we generalize problem (1.4) in two

ways and offer considerably simpler and formally eff icient

solutions.

2. Transformations of Var iables

Consider the problem

mm cx

s.t. Ax > b (2.1)

x~~ 0

which we may write as

mm cx

s.t. r A ]  — rE l  (2.2)

L x i x 
~ L~ J

Now let T be a norisingular matrix and consider the change of

variables ~ = T~ . Since T is nonsingular , (2.2) is equiv-

alent to

4
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mm ( cT)y

r A T 1 r b i
L T J  

~~~
> [~ j (2.3 )

y unrestricted

in the sense that if i is feasible to (2.2), then T~~~ is

feasible to (2.3), and if ~ is feasible to (2.3), then T~
is feasible to (2.2). If in addition T is unimodular , then

if x has a’l i nteger entries, T 1x has all integer entries ,

and if ~ has all integer entries Ty has all integer entries.
V 

Therefore ,

Observation 2.1: For T nonsingular and unimodular the in-

teger—constrained versions of problems (2.2) and (2.3) are

equivalent in the sense that ~ solves (2.2) if f y = T 1x

solves (2.3).

We will use this insight to construct equivalent integer

programs wherein special , exploitable structure is displayed.

3. Almost a Network 
-

A key idea of this paper is that under certain condi-

tions , when A is a circular l’s matrix , problem (1.1) is

“almost” a network flow problem. Problem (3.1) below,

where A is a (3, 5) matrix , will provide a continuing illus-

tration of this class of problems. Later we will observe

that the ideas to follow generalize easily.

5
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mm c1x1 + c2x2 + c3x3 + c4x4 + c5x5

s.t .  1 0 0 1 1

1 1 0 0

1 1 1 0 0 B

0 1 1 1 0

0 0 1 1 1
X — (3 .1)

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 H

x integer

where the nonnegativity constraints are expressed by the lower

portion of the matrix. Perform the change of variable given

by x = Ty where T is defined in (1.3) . Such a change of

variable corresponds to successive column reduction of matrix

A , and results in

mm (c1-c2)y1 + (c2—c3)y2 + (c3—c4)y3 + (c4—c5)y4 + c5y5
s. t. ~~ 

—
~~~ 

—
~~~ ~~

0 0 1 0 0 £

— l 0 0 1 0

0 — l 0 0
> — (3.2)

1 0 0 0 0 —

—1 1 0 0 0

0 — 1  1 0 0 5
0 0 — 1  1 0

0 0 0 — 1  1

~ unrestricted but integer

6 
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Moreover , since such a P is both nonsingular and unimodular,

(3.2) is equivalent to (3.1) as an integer linear program.

Thus solving (3.2) solves (3.1). We solve (3.2), on the

strength of the following ,

Observation 3.1: With the exception of the last column,

that corresponding to y5, problem (3.2) is the linear pro-

gramming dual of a network flow problem.

That is, if we fix (temporarily) 75’ problem (3.2) may

be written as

c5y 5 + mm (c1—c2)y1 + (c2—c 3)y2 + (c3—c4)y3 + (c4—c5)y4

s.t .  - 

1 0 —1 0 
- 

b1 
— y5

0 1 0 —l b2 — y 5

o 0 1 0 b3

—l 0 0 1 y
1 

b4
0 — 1  0 0 y

> (3.3)
1 0 0 0 y3 

— 

0

—1 1 0 0 .y 4. 0

0 — 1  1 0 0

0 0 — 1  1 0

0 0 0 — ]~

~1’ y2,  y3, y 4 unrestricted but integer

which is the linear programming dual of a network flow

problem. The obvious idea is to fix values of y5 over its

allowable range and solve corresponding network flow pro—

blems until the best objective value is found. Let us re-

fine and extend this idea.

I 
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4. Properly Compatible l’s

Following Tucker [181, we define a 0 - 1 matrix A

to have properly compatible circular l’s in columns if

and only if (i) the l’s in each column are circular , and

(ii) for any two columns a
3 
and 

~k’ if the first (in a

cyclic sense) 1 in preceeds that of ak, then the

last (in a cyclic sense) 1 in does not preceed

that of a
3
. Roughly speaking, if a circular band starts

later than another, it can end no earlier. The matrices of

Example 4.1 illustrate properly compatible circular l’s in

columns. For matrices with this property, a natural

order ing of the columns suggests itself ,

Column Ordering Algorithm

1. Order columns in groups, where group i consists

of those a3 whose first (in a cyclic sense) 1 appears in

row i. Then,

2. Within each group, order columns so that a
3 

pre-

ceeds ak if the last (in a cyclic sense) 1 of preceeds

that of ak. The columns of Example 4.1 have been so
4 -

V 
ordered . Henceforth , we assume , without loss of generality,

that a matrix with properly compatible l’s in columns has

its columns ordered as above. Important for us shortly will

be

Observation 4.1: A matrix with properly compatible- circular

l’s in columns has the property of circular l’s in rows.

Consider now the problem

8
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~1 1 0 0 1 1 1

1 1 1 0 0 1 1

0 1 1 1 1 0 0

0 0 1 1 1 1 0

0 0 0 0 1 1 1

Example 4.la: Properly compatible circular l’s in columns.

]. 0 0 1 1

1 1 0 0 1

0 1 1 0 1

0 0 1 1 1

Example 4.Lb: A circular l’s matrix, the columns of which
are not properly compatible.

9
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mm cx

s.t. A~c > b (4.1)

x > 0, integer

where A has properly compatib],e l’s in columns. Perform

the change of variables given by ~ = Ty, where T is the non-

singular unimodular matrix defined in (1.3). Then, we have

an equivalent integer linear program

mm (~T)j

s.t. rAT 1 —

L TJ ~~~~~ 
L~~~~~~~~J 

(4.2)

~ unrestricted but integer

Since A has circular l’s in rows , each row of A has

either consecutive l’s or consecutive 0’s (18]. Therefore

each is of the form

(i) 
~~~~~~ 

(0,...,0, l,...,1, 0,...,0), or

(ii) = (l,...,l, 0,...,0, 1,...,1), or

(i i i)  = (l ,...,1, O,...,0), or

(iv) ~ = (0,...,0, 1,...,l)

But then each row r1T of AT is of the form

(i) ~m T = (0,...,0, —1 , 0,...,0, 1, 0,...,0), or

(ii) i
~
T = (0,...,0, 1, 0,...,0, —1 , 0,...,0, 1), or

(iii) 
~~~ 

= (0,...,0, 1, 0,...,0) ,  or

(iv) r
~
T = (0,...,0, —1, 0,...,0, 1), respectively.

Note that , excluding the ~ th column, each row of IAT 1 
has at

L~ i

10
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most one +1 and one -1 , all other entries being 0.

For notational convenience , let us partition T into

its ~th column and the remainder of the matrix: T — [Tn ~~
]

V 

= (Trw e~ 1~ since the n~~ column of T is (0,...,0, 1).

Similarly partition ~ = (~~~, y~). Then problem (4.2) may

be rewritten as

mm (
~
Tr)~ r + CnYn

s.t. rAT a 1 ly  1r ~ r > I (4.3)
LTr en] L~~J 

- L~ J
~r’ 

y~ unrestricted but integer

Now we can formally state

Lemma 4.1: If for problem (4.1), A has properly compatible

circular l’s in columns, then under the prescribed change of

variables rATni is the transpose of a network matrix.

[Tn
That is, for fixed integral y~, the resultant version of (4.3)

mm (~ T ) ~~
s.t. rAT 1 r~ -~~y 1r 

~r ~ 
_n n (4 4)

L Tn L° - enYn]
unrestricted but integer

is the linear programming dual of a network flow problem.

Thus, problem (4.4) is efficiently solvable, at least through

its dual. This suggests the idea of searching through the

allowable values of y~, solving a tractable subproblem (4.4)

each time, to find a (j~~, y~) which minimizes (~
Tr)~ 

+ c y .

11

~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~ 
) -

5-



5. Stalking the Wild

- First we determine the allowable range of the integer

y~. Let y~ be a value of y~ in some optimal solution to

(4.2) , and let bmax be the largest entry in b. Then

Lemma 5.1: b < y* < 3.~ for some y~

Proof: Since ~ = T 1
~ , and

1

1
= . 

.
.

i 1...1

we have that y
~ 

= lx. To show the lower bound, it is

suf f ic ien t  to observe that since ~ > 0, y = lx > Za. .x. >
— n ~~ j ’J J~~~

V i. Therefore, y
~ 

> ~~~~

To establish the upper bound , we may assume that at V

optimality every variable in (4 .1 )  appears in some tight

constraint , since otherwise that variable could be reduced ,

feasibility maintained , and the objective function not in-

creased. Summing over the set S of tight constraints yields

E Ed. .x~’ E b.; but IS > E b. = E ~ d. .x* > ~~~* = ~,*

i-S ~ 
13 ~ i~S i€S 1 i€S j 13 3 — n

Q.E.D.

To remind us of its, dependence on y~, let the objective

function of problem (4. 4) be written as (
~
Tr)jr = z(y~)

and let the optimal value, for fixed 
~n’ 

be z*(y~).

Lemma 5.2: z*(y~) is convex in y~ over bmax ~ ~“n ~

Proof: Since the constraint matrix of problem (4.4)is

totally unimodular, the integral restrictions may be dropped. 
V

Then the desired conclusion follows from similar results

12
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for continuous-valued linear programs (e.g., Geoffrion and

Nauss [9]).

Q.E.D.

Lemma 5 , 3 :  The optimal function value (~T)~ of problem

( 4 .  2) is convex in y~ over b ~ ~
‘n ~

Proof: Clearly CnYn is convex in 7n~ 
z*(yn) is convex in

:- by Lemma 5.2, so since sums of convex functions are convex,
V ) + c~ y~ is convex in y~~. But this is the optimal

ft~~ction value of problem (4 . 3 )  and therefore of problem

-(4.2)

Q . E . D.

6. A Solution Technique

Given the problem

mm cx

s.t. A x > b
— — . (6.1)
x > 0, integer

where A has properly compatible circular l’s in columns,

the preceding results jus t i fy  this solution procedure ,

Step 0: Perform the change of variables

Let x = Ty,  where T is defined by (1.3) to form the equivalent

problem
V 

mm (cT)~

s.t .  rAT~ lb i

LTJ ~Ld
( 6 . 2 )

y unrestricted but integer

Step 1: Solve the equivalent problem , (6.2)

13
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A. Note bounds on integer y*: b < y~ < lbn max— n —  -

B. Minimize z *(y ) + c,y~ = (~ T)~ over this interval .

Since y~ is integer and z *(y ~ ) + c~ y~ is convex in y~~,

an e f f ic ient  technique such as Fibonacci search [21] may be

used. Furthermore , for fixed y~ , z*(y~ ) is readily calcu l-

ated by solving

z*(y~ ) = mm (CTr)~~r
V 

rAT -T b - a y
r i  f l f l

I 
— — — (6 . 3 )

[ T j  
r -  O - e ~y~

unrestricted but integer

Since this is the dual of a minimum cost network flow prob-

lem , it is efficiently solvable. Let (cT)y* = mm z*(y~ ) + c~y~
yn

and let (4~ y~ ) = y~ be the associated solution ; then y~

solves (6.2) and (~T)~~* is the optimal function value.

Step 2: Construct the optima l solution to (6.1) by

the change of variables x* = Ty*.

7. Efficiency of the Algorithm

This solution procedure works efficiently , even for

pessimists, by the following worst-case analysis.

Step 0, the ini tial change of variables , requires no

more than 0(mn) steps.

Step 1 requires the solution of (6.3) for fixed y~ .

But the network flow algorithm solves (6.3) in a number of

steps which is bounded above by a polynomial in the size of

the encoding of the problem data (8]. We may take this

14
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polynomial to be p (m , n , log 2 IS, log2 I~, y~ ). But since

y~ < ib, log2y~ < log~ IS, so that we may consider the solu-

tion to ( 6 . 3 )  to require no more than 0 ( ~~(m , n , log2 IS,

log2 Is)) for some polynomial ~~~~. And since Fibonacci search

requires that we consider no more than 0(log 3 IS) va lues of

y~~, we may determine ~~ = (y~ , y~ ) is no more than 0(log 3lb

.~~(m , n , log2 15, log2 l c ))  steps.

Step 2, the f i na l  change of variables, requires 0 ( n )

steps.

Therefore the solution procedure solves (6.1) in at

worst 0(mn + log 3 IS • ~i(m , n, log2 IS, log 2 Is)) steps.

Since this is polynomial in a binary encoding of the pro— 
V

blem data El]., we have proven

Lemma 7.1: Problem (6 .1 )  is solved by the solution tech—

nique with formal e f f ic iency  relative to a binary encoding

of the problem data.

8. A Special Objective Function -

For a special objective function , a wider class of

problems may be solved and additional results discovered.

Conside r

mm lx

s.t.  Ax > b ~8.l)

x > 0, in teger

where A displays the property of circular l’ s in columns

(not necessarily properly compatible).

15
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We say tha t column a
3 
of A dominates column ak ~~

~ 
a)~ entr~’wise. Consider two such columns and let

= ~~~~~~~~~~~~~~~~~~~~~~ solve (8.1). Then

+ x~ ,...,Ok,...,x*) is feasible to (8.1) and ,
V 

moreover , has the same (optimal) objective value. Therefore

Lemma 8.1: An optimal solution to problem (8.1) exists

for which none of the columns of A corresponding to nonzero

variables are dominated by any other such column of A.
Therefore we may reduce (8.1) by eliminating any columns

of A (and associated variables) which are dominated. But

then the resulting matr ix displays properly compatible cir-

cular l’s in columns, so that the problem is solvable by

the approach just presented. (Note that, in fact, it is

sufficient for this conclusion to assume so-called “agree-

able ” costs, for which c
3 

< C
k !!.~ ~~ ~ 

(cf., [14]));

Let us assume that the matrix A has been pruned of

dominated columns. Then the special properties of the

transformed problem are of interest. In particular , the

new objective function is (~T)~ = + y~. Thus

solving the transformed problem ( 6 . 2 )  is tantamount to

f inding the smallest integer y~ for which the constrain ts

of (6.3) have a feasible solution . Equivalently, we seek

the smallest integer y
~ 

for which the dual network flow

. problem to (6.3) is not unbounded , i.e., is free of cycles

of positive net cost.

For the special objective function c~ such that

c1 > c2 > ... > c~~1 (which includes the objective function

lx ), a particularly simple solution technique applies to the

16 — 
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t ransformed problem ( 6 . 3 ) .  The new objective funct ion has

the property (CT r ) > 0; fur thermore rAn has no more than

LTrJ
one +1 in each row , and at least one +1 in each column . Thus

th is  version of (6.3) is solvable by the simple recursive

substitution scheme of Dorsey, Hodgson , and Ratl i f f  [ 7 ] .

9~ 
Close Enough

For the transformed version of problem (8.1) , an

interesting round-off result holds (see similar results in

[4,20]). Recall that the transformed , equivalent vers ion of

(8.1) is 

——mm °~ r 
+

s. t. [AT an Ri [S
— I I ~ i ... (9. 1)

L Tr e~~ L~~J L° -

~
‘r ’ y1~ unrestricted but integer

Lemma 9.1: Let ~~~‘ = (yj,... ,y’) solve the continuous-valued

relaxation of (9.1) then ~ = (1Y~1’1Y~1’.. 
.,1y~1) solves

the integer-restricted problem (9.1).

Proof: Clearly 1y~1 is a lower bound on the optimal function

value of (9 .1) . L4oreover ~~~~~~~~~~~ is an integer—

valued vector which achieves this value. To see that this

vector is feasible to (9.1), we Will show that it satisfies

each of the constrain ts , of which there are three types:

~~ ~j 
— 
~
‘k ~ b1

~~ ~
‘j - ~‘k + y~ > b1

(iii) ~ b1

17
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First observe that for any two numbers a and b , 
V

— lal = L-aJ , (9.2 )

and

lal + fbi ~ fa+bl (9.3)

By (9.3), Ia-b] + fbi ~ lal so that  Ibi 
- lal ~ -Ia-b] = 1..b-aj

by (9 . 2 ) . Then by the last inequality we have

( i )  - 1y~1 ~ 
> [b 1J 

= b
~ 

since b~
is in teger.

(i i)  1y] - 1~1 + lYfli > 1y +y 1 - I Y~] >

~y~ -y~ +y~J 
> 
[~
b
1J 

b1 since b
~ 

integer.

(iii) 1y 1 > ~~ > b
1.

Hence , each of the constraints of (9.1) is satisfied and

~~~~~~~~ ‘I~1) is an optima l feasible solution.

Q.E .D.

There fore problem (8.1) may be solved by the following

simple app lication of linear programming:

( i)  Solve the continuous-valued relaxation of

(8.1)  by ,  for example , the simp lex method of linear program-

ming . Let the solution be x’. -

(ii) Transform the solution via y ’ = T 1x ’ , for T

as in ( 1 . 3 ) .

(iii) Round-up ~~ * = ~~~~~~~~~~~~
(iv) Transform back to ~~ = T~*. Then ~~ solves

the integer program (8.1).

- 
-
~~~~~~~~~ 
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10. Applications

A .  (‘y c l i~ S t a f f i n g  w i t h  O v e r t i m e

V A basic staffing problem involves a facility such as a

hospital that operates 24 hours each day . Assume there are

fixed hourly staff requirements ~~~ and that there are three

basic work shifts, each of eight hours duration: 0700—1500 ,

1500—2300, and 2300-0700. Overtime of up to an additional

eight hours is possible for each shif t . What is the minimum - V

cost number of workers and their shifts such that all staff

requirements are met? This problem may be formulated as

in Figure 10.1, where the constraint matrix displays pro-

perly compatible circular l’s in columns. Thus the problem

is eff ic ient ly  solvable by a bounded series of network flow

problem.

B.  D a y s - o f f  S c h e d u l i n g

A problem studied by Brownell and Lowerre [5] is to

minimize the total workforce necessary to meet daily staff-

ing requirements , where each worker is guaranteed two days

off each week , including every other weekend . For the case

in which the days off each week are to be consecutive , the

problem may be formulated as in Figure 10.2. The rows of

the matrix display more complicated cyclic structure than

simple circular l’s; but since the matrix has circular l’s

in rows, the same change of variables transforms the problem

to efficiently solvable form. -

19
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mm cx

s.t.

07 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 1 1 1 1 1 1 1 1
08 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 0 1 1 1 1 1 1 1
09 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 0 0 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 0 0 0 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 1 1 1
12 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  O O C 0 0 0 1 1 1
13 1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 1
14 1 11 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0 1
15 0 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0
16 0 0 1 1 1 1 1 1 1  1 1 1 11 1 1 1 1  0 0 0 0 0 0 0 0 0
17 0 0 0 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  —

>~~~18 0 0 0 0 1 1 1 1 1  1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0  x _
19 0 0 0 0 0 1 111 1 1 11 11 111 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 1 1 1  1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 1 1  1 1 1 1 1 1 1 1 1  0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 1 11 11 11111  0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0  0 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1
24 0 0 0 0 0 0 0 0 0  0 0 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1
01 0 0 0 0 0 0 0 0 0  0 0 0 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1
02 0 0 0 0 0 0 0 0 0  0 0 0 0 1 1 1 1 1  1 1 1 1 1 1 1 1 1
03 0 0 0 0 0 0 0 0 0  0 0 0 0 0 1 1 1 1  1 1 1 1 1 1 1 1 1
04 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 1 1 1  1 1 1 1 1 1 1 1 1
05 0 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 1 1  1 1 1 1 1 1 1 1 1
06 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

x > 0, integer

Figure 10.1: A cyclic s t a f f i n g  problem with overtime .
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mm c
1x1 + C

2
X

2 V

s.t. 1 1 1 1 1 1 1 1 1 1 1 0~~ -

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 1

1 1 1 1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1  l x i
1 1 1 > 6

0 1 1 1 1 1 1 1 1 1 1 1  L~2 J
0 0 1 1 1 1 1 1 1 1 11

1 0 0 1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

x1, X
2 

> 0, integer

Figure 10.2: A version of the Browne].l and Lowerre problem. 
V
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